
The Hidden Component of Size in Two-Dimensional Fragment Descriptors:
Side Effects on Sampling in Bioactive Libraries

Steven L. Dixon* and Ryan T. Koehler†

Telik, Inc., 750 Gateway, South San Francisco, California 94080

Received December 16, 1998

We have carried out a number of sampling experiments in libraries of bioactive compounds to
illustrate how size biases introduced by two-dimensional (2D) fragment distance functions may
provide misleading information about the diversity of compound subsets. The number of
different biological targets covered by a given subset is used as a measure of bioactive diversity,
and it is considered to be the relevant property with which 2D diversity should correlate. Since
the nature of the size biases depends on the way in which 2D distance is computed, we
investigated three different methods of calculating distance. Use of 1-Tanimoto as a dissimilarity
measure leads to the spurious conclusion that collections of structurally small compounds are
inherently more diverse than other collections which may cover a broader range of sizes and
more biological targets. XOR or squared Euclidean distance, by contrast, shows a preference
for subsets of structurally larger compounds, but this does not appear to have as many adverse
consequences in terms of target coverage. A simple product of 1-Tanimoto and XOR tends to
equalize the opposing size effects of the two component distance functions and leads to a
relatively unbiased means of comparing structures. Results here suggest that careful
consideration should be given to the way in which chemical structures are compared whenever
2D fragment descriptors are used.

Introduction

As the boundaries of combinatorial chemistry and
high-throughput biological screening have expanded, so
too has the need for fast and meaningful computer-
based comparisons of molecular structures. With cor-
porate libraries converging on one million compounds
and virtual libraries containing orders of magnitude
more, such methodologies have become an absolute
necessity. Any means of comparing chemical structures
is valid only to the extent that it reflects intuitive
notions about similarity that have evolved over decades
in the field of medicinal chemistry. These ideas are
embodied in the similar property principle,1 which states
that compounds with similar structures will tend to
exhibit similar physicochemical and biological proper-
ties. This concept provides much of the framework on
which modern lead optimization is built.

Curiously, though the similar property principle
makes no claims regarding dissimilar structures, it is
also used as the basis for essentially all work in the field
of molecular diversity.2-4 Basically, the converse of the
principle is used to infer that dissimilar-looking struc-
tures will exhibit dissimilar properties. Though this may
be true to some extent, there is not always a valid, global
relationship5 between structural dissimilarity and dif-
ferences in measured properties such as biological
activity. In general, as compounds become more diverse
structurally, we are progressively less certain of how
they compare to one another in terms of biological
activity.5 For these reasons, we must be careful in
drawing conclusions about diversity based solely on

calculated measures of dissimilarity, and we should bear
in mind that biological targets provide the ultimate scale
on which diversity is usually measured.

Without some a priori knowledge of the structural
features that govern activity, or at least knowledge of
the best sets of descriptors to use when dealing with
specific targets, diversity in any true bioactive sense is
not something that can be easily manipulated by choice
of compounds. There are, however, some basic control-
lable factors that can have an effect on bioactive
properties and certain minimum requirements that
should be met in this regard. In particular, when
selecting compounds from a library on the basis of
dissimilarity, one should be confident that gross struc-
tural biases are not being introduced in the process.
There is evidence6,7 to suggest that this sort of thing
may be happening when two-dimensional (2D) fragment
descriptors are used to measure diversity. Specifically,
we are concerned with the way in which widely utilized
2D distance functions introduce biases related to the
overall size of compounds and how this may ultimately
impact upon the bioactive properties of the subsets
selected.

To investigate these effects, we first define appropri-
ate scales on which to measure the properties identified
as molecular size, bioactive diversity, and 2D structural
diversity. We then carry out three basic types of
sampling experiments in libraries of compounds with
established pharmacological endpoints. In each experi-
ment, one of the three above properties is varied in a
systematic fashion, and the responses in the other two
properties are analyzed. This provides a means of
isolating the specific effects of 2D size biases and allows
a determination to be made as to whether these effects
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are detrimental in a true bioactive sense. The sampling
experiments demonstrate that Tanimoto coefficient8 and
squared Euclidean distance are prone to measuring
diversity in a way that favors selection of compounds
which differ markedly in average size from the overall
library in which they reside. Results also reveal situa-
tions wherein size biases introduced by 2D fragment
descriptors lead to conclusions about diversity which
appear to be at odds with the range of pharmacological
properties of the compounds being considered.

Assessing diversity is now a critical component in the
lead discovery process, and success on this front is
largely determined by how intelligently we utilize the
myriad of tools at our disposal. Whether designing new,
innovative techniques in the field of molecular diversity
or simply applying principles from well-established
methods, it is important to avoid known pitfalls, even
if little attention has been paid to them in the past. It
is the intent of this paper to raise awareness about some
of these pitfalls and provide biologically relevant evi-
dence of why they should be avoided.

Overview of 2D Fragment Descriptors

As a result of their availability through various
database packages, 2D fragment descriptors2,6,9,10 have
increased in popularity right along with the movement
toward high-throughput biological and chemical meth-
odologies. Their growing use has also been fueled by
numerous investigations5,9-13 which have shown them
to be rich in structural information that is relevant to
biological activity.

Fragment-based descriptors have been around for
decades,14-16 but only in the past few years have they
been routinely cast into the high-dimensional bit string
representations that are the focus of this paper. For
conceptual purposes, these types of descriptors may be
divided into two categories:2,9 structural keys and
hashed fingerprints.

Structural keys are based on a predefined fragment
dictionary, which is a set of fragments that that are
relevant for some purpose, usually efficient database
searching, and which occur with varying frequency in
2D depictions of chemical structure. A given compound
is represented by a string of ones and zeros that encode
the presence, absence, and sometimes the frequency of
appearance of each predefined fragment. In the case of
frequency, a set of n bits is allocated for a fragment to
encode up to n occurrences in the compound.

Hashed fingerprints, by contrast, do not rely upon a
fixed fragment dictionary but rather on an exhaustive
substructure enumeration procedure that identifies all
possible fragments within some restricted domain, e.g.,
paths containing 1-7 bonds. Each unique fragment in
a molecule is assigned a numerical value that is a
function of its structure, and this number is used as
input to a hashing algorithm that sets a collection of
bits along a string of some fixed length. There are
usually many more unique fragments in a chemical
library than there are bits in the fingerprint string, so
it is possible for two different fragments to set some of
the same bits. However, the length of the string can be
adjusted so that these collisions do not occur frequently
enough to obscure a significant fraction of the distin-
guishing structural information.

There are of course advantages and disadvantages to
using either type of fragment representation. Because
they are derived from a fixed fragment dictionary,
structural keys are often criticized for lacking the
generality that is inherent in hashed fingerprints.
Despite these purported limitations, structural keys
have been shown to perform quite well in comparison
to hashed fingerprints in studies involving biological
activity data.9,10

Bit String Comparison Methods
Tanimoto coefficient8 (TC) is probably the most com-

monly used parameter for measuring similarity between
bit string representations. For compounds i and j, it is
defined as

where Ni is the number of bits set by i, Nj is the number
of bits set by j, and Nij is the number of bits set by both
i and j. An equivalent formulation based on bit-wise
logical operators is

The logical AND returns a value of 1 if the kth bit is
set in both structures and a value of 0 otherwise; the
logical OR returns a value of 1 if the kth bit is set in at
least one structure, and 0 if it is set in neither structure.
TC increases toward a value of 1 as bit strings differ at
fewer and fewer positions. A minimum similarity of 0
is reached when two structures do not set any of the
same bits.

For purposes of measuring dissimilarity or distance,
1 - TC is the natural choice. Straightforward manipu-
lation of eq 1 yields

Note that the numerator represents the union of set bits
minus the intersection of set bits, which is simply the
number of positions at which the two bit strings differ.
The logical XOR (exclusive OR) operator returns this
quantity in a bit-wise fashion:

The potential for size-related biases becomes evident
when one considers the behavior of TC in the case of
small molecules. As observed by Flower,6 small struc-
tures return characteristically low average Tanimoto
similarities when queried against a typical library of
compounds. One contributing factor is the tendency of
small structures to turn on fewer bits, which restricts
the number of set bits that can be shared with other
structures. Proceeding quantitatively, we see that the
maximum value for the numerator in eq 1 is the smaller
of the two numbers Ni, Nj. The denominator is bounded
below by the larger of Ni and Nj, so the maximum
possible value of TCij is min(Ni,Nj)/max(Ni,Nj). Thus, the
smaller the structure of the query, the smaller will be
the upper bound for TC.

Perhaps less obvious is the pronounced sensitivity of
TC to changes in the bit strings when either compound
is small. Lajiness7 demonstrated this behavior math-

TCij ) Nij/(Ni + Nj - Nij) (1)

TCij ) ∑k(bitik AND bitjk)/∑k(bitik OR bitjk) (2)

1 - TCij ) [(Ni + Nj - Nij) - Nij]/(Ni + Nj - Nij) (3)

1 - TCij ) ∑k(bitik XOR bitjk)/∑k(bitik OR bitjk) (4)
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ematically by holding fixed the value of Nij and varying
the number of positions at which the bit strings differed.
The greatest sensitivity in TC was observed for small
values of Nij, which, as noted before, are associated with
small compounds.

Because there is a correlation between the size of a
compound and the number of bits it sets, certain biases
related to size are unavoidable when 2D fragment
descriptors are used. However, TC tends to amplify
these effects because it involves a ratio of two size-
dependent factors. Despite this undesirable behavior,
TC has historically been the parameter of choice in
applications involving 2D fragment descriptors.

Another common method of comparing bit strings is
based on Euclidean distance d:

The square root operation is frequently avoided to speed
up calculations or in cases where a rank-ordering of
distances is all that is required. Since the bit values are
0 or 1 the squared Euclidean distance is simply the
number of positions at which the bit strings differ, i.e.,
the XOR distance:

This form is also commonly referred to as the city-block
or Hamming distance.1 Molecular size effects are still
a concern, but one size-dependent factor is removed
compared to 1 - TC.

Other methods7-9,17 of comparing bit strings are
sometimes used, the most notable among these being
the cosine coefficient. However, this association measure
typically correlates strongly17 with TC, so it is not
considered here. As shown by Lajiness,7 the properties
of 1 - TC and XOR are quite different, and because so
much published work has relied on them, we focus on
these measures of dissimilarity in our study of size
biases and diversity.

Bioactive Libraries
The phenomena we wish to demonstrate can be

observed in essentially any chemical library, but the
consequences of size-related effects may not be appreci-
ated unless they are referenced to some property of
biological relevance. For this reason, we have carried
out our analyses on two libraries of compounds with
established bioactive properties, Table 1.

The first set of compounds was taken from the RBI
LOPAC library,18 which is a collection of 640 biologically
active agents and biochemical probes that are available
on high-throughput screening plates. Biological targets
for these compounds were confirmed via the RBI
catalog19 and other sources.20-22 Compounds for which

the target was unknown or unclear were discarded, as
well as compounds which were reported to hit more than
one target. Note that in the case of receptors we made
no distinction among different subtypes, simply because
so many of the associated ligands were reported either
to show affinity for more than one subtype or the
subtype information was incomplete. Since our ultimate
goal was to establish a scale of bioactive diversity, the
consequence of merging related targets is primarily the
creation of a lower bound for diversity. Overall, the
filtering process retained 445 of the 640 RBI compounds.

The second set of compounds was taken from the
CMC (Comprehensive Medicinal Chemistry) database,
version 98.1, which is available through MDL Informa-
tion Systems, Inc.23 This library contains 7497 com-
pounds that have some biological or medicinal applica-
tion. An analogous filtering process was used to arrive
at a set of 964 compounds for which a primary biological
target could be readily identified. Targets are certainly
known for a significant fraction of the other compounds
in the database, but in most instances only the thera-
peutic class (analgesic, antiinflammatory, diuretic, seda-
tive, etc.) is listed, and it would have been an unwieldy
task to even attempt to identify the exact mode of action
of each compound.

Table 1 summarizes general properties of the ligands
in the two filtered libraries. For both collections, the vast
majority of compounds are seen to act at receptor sites,
and this simply reflects the relative importance of this
class of macromolecules as therapeutic targets. We note
that the ligand categories in Table 1 and elsewhere in
this investigation are based on the initial site of binding
and not on any secondary events that occur as a
consequence of binding.

Table 2 is a breakdown of biological targets according
to frequency of appearance and average molecular

Table 1. General Types of Ligands in the Two Bioactive
Libraries

RBI
(445 compounds)

CMC
(964 compounds)

number fraction number fraction

receptor agonists/
antagonists

337 0.757 776 0.804

enzyme inhibitors 84 0.189 170 0.176
ion channel blockers 24 0.054 18 0.019

dij
2 ) ∑k(bitik - bitjk)

2 (5)

dij
2 ) XORij ≡ ∑k(bitik XOR bitjk) (6)

Table 2. Breakdown of Biological Targets According to Ligand
Frequency and Size

target

number
of

ligands

fraction
of

library

average
molecular

weight

RBI compounds
dopamine receptor 53 0.119 380.0
adenosine receptor 44 0.099 389.3
serotonin receptor 41 0.092 365.9
adrenergic receptor 40 0.090 331.9
cholinergic receptor 35 0.079 355.4
NMDA receptor 27 0.061 244.6
opioid receptor 20 0.045 455.3
glutamate receptor 18 0.040 239.3
GABA receptor 18 0.040 242.2
histamine receptor 15 0.034 309.4

top 10 targets 311 0.699 344.1
remaining 53 targets 134 0.301 333.6

CMC compounds
cholinergic receptor 194 0.201 355.6
adrenergic receptor 139 0.144 275.9
histamine receptor 105 0.109 329.2
glucocorticoid receptor 71 0.074 456.7
opioid receptor 69 0.072 333.9
cyclooxygenase 51 0.053 296.8
estrogen receptor 48 0.050 362.7
serotonin receptor 32 0.033 330.3
dopamine receptor 29 0.030 356.7
angiotensin-converting enzyme 22 0.023 451.4

top 10 targets 760 0.788 343.1
remaining 53 targets 204 0.212 455.7
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weight of the associated ligands. Molecular weight was
selected as a representative measure of size because it
is not a function of 3D structure, and it provides a fairly
continuous coordinate from which to sample and com-
pare compounds.

Six of the top 10 most frequently appearing targets
are common to both libraries, with the primary differ-
ence being that the RBI data set is more biased toward
targets in the CNS. By sheer coincidence, the libraries
each cover a total of 63 targets, 26 of which they have
in common. The 53 targets that are not listed appear
with frequencies of 1-11 and 1-14 in the RBI and CMC
libraries, respectively.

Average molecular weights do not differ significantly
between the two sets of compounds when considering
only the top 10 targets. However, ligands for the
remaining 53 targets differ in average size by more than
120 amu, and as shown in Figure 1, these compounds
contribute to a modest overall shift toward higher
molecular weights within the CMC set. This fundamen-
tal difference is critical for demonstrating size-related
effects, and it was one of the primary reasons for
selecting these two libraries.

Descriptor Sets
Analyses were carried out using two different sets of

fragment descriptors. The ISIS MOLSKEYS24,25 were
chosen as a representative of the structural key class,
while the Daylight Fingerprint Toolkit26 was used to
generate hashed fingerprints.

The MOLSKEYS are based on 166 different substruc-
ture queries which encode the presence or absence of
straight, branched, and cyclic fragments of various sizes,
heteroatoms and heterocycles, multiple bonding pat-
terns, and a wide range of other known chemical
moieties. While the MOLSKEYS rely on a fixed frag-
ment dictionary, they have been shown to be among the
best available sets of 2D descriptors in applications
involving biological activity data.9,10,13

Daylight hashed fingerprints are generated according
to a multi-stage process. First, bits are set to account
for each unique atom center in the molecule, with
differentiation according to elemental type and the
immediate bonding environment. Then, additional bits
are set for all unique paths within some specified range
of lengths, which, in the present case, was 1-7 bonds.

Finally, fragments containing unique cycles and branch-
ing are encoded in the fingerprint.

Daylight allows the user to control the size of the
fingerprint in two ways. First, one can specify, to the
nearest power of two, the length of the bit string onto
which the hashed patterns will be mapped. Then one
can “fold” the fingerprint in half as many times as is
desired, with a logical OR operation being applied to
map pairs of bits onto a single bit. The initial length
and/or folded length may be adjusted to control the bit
density, which is the average fraction of bits in the string
that are set by the compounds in a particular library.
Increasing the bit density, i.e., reducing the size of the
fingerprint, saves on computer memory, but it does lead
to more frequent collisions among fragments. On the
other hand, extremely long fingerprints, though es-
sentially devoid of collisions, are of questionable value
because certain bits may never be set, or they may be
set so infrequently that they are leveraged on only a
handful of compounds in a library. In the present study,
fragments were hashed onto a string of 512 bits and no
folding was performed. This resulted in bit densities of
0.31 and 0.33 for the RBI and CMC compounds,
respectively. These values are very close to the default
bit density of 0.30 recommended in the Daylight docu-
mentation.27 By comparison, bit densities for the
MOLSKEYS within the two libraries were 0.29 and
0.28.

Effects of Varying Molecular Size

The first set of experiments was designed to see how
bioactive diversity and 2D structural diversity vary with
average ligand size and to what extent this depends on
the library itself. Before proceeding, we must specify
exactly how diversity is to be measured, both in terms
of biological characteristics and 2D structural charac-
teristics.

Bioactive diversity here is defined as the total number
of biological targets covered by a given set compounds.
We consider this to be a fairly objective means of
expressing the overall range of biological behavior
inherent in a set of compounds, and similar approaches
have been used by others.4,5 While this scale of diversity
may be somewhat clouded as a result of homology
among related biological targets, our procedure of merg-
ing different receptor subtypes goes a long way toward
eliminating these sorts of ambiguities.

Structural diversity is defined as the average distance
observed between all unique pairs of compounds in a
given set. Other measures of diversity are certainly
possible, such as average nearest neighbor distance,
minimum nearest neighbor distance, and so forth. We
selected average pairwise distance because it encodes
relationships between all pairs of compounds, and it is
therefore minimized only when the entire set occupies
a single point in descriptor space. Average nearest
neighbor distance drops to zero when each compound
has a duplicate within the set, and minimum nearest
neighbor distance becomes zero when any duplicates are
present. In either case, the measured diversity is zero,
even if the subset, as a whole, spans a wide range of
structural classes.

To investigate the effects of varying ligand size,
subsets of 50 compounds were selected at random from

Figure 1. Distribution of molecular weights for the RBI and
CMC libraries.
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within narrow, Gaussian-shaped probability windows
centered at different points along the molecular weight
coordinate, Figure 2. The location of each window
determines the average molecular weight of compounds
that are sampled, and the standard deviation of the
Gaussian controls the overall spread of molecular
weights. Gaussians were centered at intervals of 5 amu,
and the standard deviation of each window was (20
amu. Average molecular weights across the series of
windows were designed to cover the range of 150-530
for the RBI data set and 150-600 for the CMC com-
pounds. The actual selection of compounds involved
generating a random molecular weight from the Gauss-
ian distribution, identifying the compound with the
closest molecular weight, then adding it to the current
subset if it was not already present. To generate smooth
statistics, 1000 subsets were sampled within each
probability window, and thus the reported values of
molecular weight, biological target counts, and pairwise
distances correspond to an average across 1000 trials.

Figure 3 illustrates how the numbers of biological
targets covered by the 50-member subsets vary with
average ligand size. Target counts tend to be higher for
the RBI subsets simply because there are about twice
as many targets per ligand in the overall library as
compared to the CMC data set. As average ligand size
is increased, the two libraries show markedly different
behavior, with the number of targets peaking at low

molecular weights in the RBI collection and at high
molecular weights in the CMC collection. This result is
consistent with the information in Table 2, and it
confirms a strong tendency for subsets of structurally
larger compounds to cover more targets in the CMC
library.

Figure 4 summarizes the trends in MOLSKEYS
distances as average ligand size is varied. When 1 -
TC is used, there is a nearly monotonic decrease in
average pairwise distance with increasing ligand size
in both libraries. The range covered is about 0.2, which
corresponds to a swing of 20% in the average Tanimoto
similarity. By contrast, the XOR distance shows a peak
at about 280 amu in the RBI library and a general
tendency to increase with ligand size in the CMC
library. Note that the XOR distance does not show as
much relative sensitivity to average size as does 1 -
TC. The change in the number of dissimilar bits is about
12, which represents only 7.2% of the possible variation

Figure 2. Illustration of the sampling technique used to
control average molecular weights and the spread of molecular
weights in 50-compound subsets. Reported quantities for each
window correspond to the average of 1000 subsets sampled
from the associated Gaussian probability distribution.

Figure 3. For subsets of 50 compounds, the average number
of biological targets covered is monitored as the average
molecular weight of the subset is varied.

Figure 4. Results for MOLSKEYS. Within subsets of 50
compounds, the average distance between pairs of compounds
is monitored as the average molecular weight of the subset is
varied.
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in this distance parameter. Because these two methods
of measuring distance seem to behave in an opposite
sense with regard to molecular size, we have also
included results from using the product of the two
distances, Figure 4c. This hybrid distance peaks early
in both libraries and then tends to drop off with size.

Figure 5 contains the corresponding results for Day-
light hashed fingerprints. Here we see the same ten-
dency of 1 - TC to decrease, although the distances are
not as sensitive to size, with ranges of only 0.17 and
0.11 for the RBI and CMC libraries, respectively. By
contrast, XOR distances from the hashed fingerprints
appear to be more sensitive to size than the analogous
MOLSKEYS distances. Variations in the number of
dissimilar bits for the two libraries correspond to 18%
and 20% of the fingerprint length, which is more than
twice the relative change seen previously. Curiously, the
Daylight XOR distances do not show the same complex-

ity as a function of ligand size that was observed with
the MOLSKEYS. Hybrid distances primarily mirror the
XOR results since the variations in 1 - TC are com-
paratively weak for the hashed fingerprints.

The simple fact that average pairwise distances vary
with ligand size does not necessarily imply the existence
of undesirable features in the fragment descriptors and/
or the distance functions. Indeed, as shown in Figure
3, there are clear trends in the libraries with regard to
bioactive diversity and ligand size. If a set of fragment
descriptors yielded distances which closely tracked the
counts of biological targets, then the apparent 2D size
biases would not be unwelcome. Unfortunately, no
combination of descriptors and distances in Figures 4
and 5 appear to closely mirror the biological target
counts in Figure 3.

Effects of Varying Bioactive Diversity

In these experiments, the number of biological targets
covered by each subset was varied, and the responses
in average ligand size and average pairwise distance
were monitored. Combined with the previous set of
experiments, these tests help to demonstrate whether
the chosen measures of 2D diversity are as sensitive to
variations in the bioactive properties of compounds as
they are to variations in compound size.

To understand how the sampling was done, first
consider the natural distribution of ligands according
to biological target. If there are N compounds in a
library, and ni of these are associated with target i, then
the natural probability of selecting a ligand of target i
is ni/N. For a collection of M targets, this natural
probability distribution can be mapped to the interval
(0,1) as follows:

Thus each target is assigned a distinct subinterval, the
width of which is proportional to the number of ligands
for that target. The ith subinterval can be further
subdivided into ni equal-sized segments, so that each
ligand is represented in the distribution. With this
mapping scheme, natural sampling proceeds by select-
ing a random number from the uniform distribution on
(0,1) and then choosing the target and ligand that
correspond to the subinterval in which the number falls.

To skew sampling away from the natural distribution,
the widths of the target subintervals can be manipu-
lated. Any collection of nonnegative numbers {p1, p2, ...,
pM} may be used to partition the interval (0,1) so as to
bias sampling in favor of certain targets. In this case,
the width of the ith subinterval would be pi/P, where P
is the sum of the numbers {p1, p2, ..., pM}. For the
natural distribution, of course, pi ) ni and P ) N.

Our goal was to design a sampling procedure that
would vary smoothly between low numbers of biological
targets and high numbers of biological targets. This was
accomplished by defining the partitioning numbers as
follows:

Figure 5. Results for Daylight hashed fingerprints. Within
subsets of 50 compounds, the average distance between pairs
of compounds is monitored as the average molecular weight
of the subset is varied.

Target 1 f (0, n1/N)

Target 2 f [n1/N, n1/N + n2/N)

...

Target M f [∑k)1,M-1 nk/N, 1)
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When t ) 0, the pi values are all unity and the interval
widths are the same for all targets, so there is an equal
probability of selecting a ligand from any of the M target
classes. This leads to high bioactive diversity in the
randomly chosen subsets. When t ) 2, the disparities
in the widths of the intervals are amplified beyond that
of the natural distribution (t ) 1), and there is an even
greater tendency to sample ligands from over-repre-
sented targets, thus leading to extremely low bioactive
diversity.

Sampling experiments were carried out by allowing t
to vary over 100 equally spaced values between 0 and
2. At each value of t, 1000 different subsets of 50
compounds were selected, and average values were
computed for molecular weight, the number of targets
covered, and the three types of pairwise distances.

Since target coverage within the two libraries re-
sponds to changes in average ligand size (Figure 3), a
second sampling procedure was carried out with the goal
of eliminating variations in molecular weight that might
naturally accompany the transition from low to high
numbers of targets. Accordingly, the average molecular
weight across a given subset was monitored and con-
trolled as compounds were added to the subset. If the
running average molecular weight dropped below the
average observed for the entire library, then only
compounds heavier than the running average were
accepted. Conversely, only compounds lighter than the
running average were accepted whenever this value rose
above the library average.

Figure 6 shows how the free and constrained molec-
ular weights change during the course of sampling low
to high numbers of biological targets. When no control
is exercised over the sizes of the compounds selected,
average molecular weights vary by 17 and 98 amu,
respectively, in the RBI and CMC libraries. Size effects
in the RBI collection are readily controlled by con-
strained sampling, as the average molecular weight is
seen to change by less than 1 amu. A larger drift of
about 7 amu is observed for the CMC library, but this
is still quite small compared to the unconstrained
change of 98 amu. Surprisingly, maintaining control of
the molecular weights does not appear to reduce the
range of target counts accessible by the basic sampling
procedure.

Figure 7 summarizes the corresponding changes that
occur in MOLSKEYS pairwise distances as the numbers
of biological targets are increased. For ease of compari-
son, the pairwise distance curves arising from molecular
weight variations (Figure 4) are overlaid on this figure.
Thus, the horizontal scale for the dotted curves (shown
along the top of each plot) is actually molecular weight
rather than target counts.

Dissimilarities among compounds in the RBI collec-
tion appear to show an overall relationship with bio-
active diversity for all three methods of calculating
distance and for both sampling procedures (Figure 7a-
c). Note, however, that the ranges in pairwise distance
observed here are much smaller than they were when
molecular weight was systematically varied, so the
underlying structure-bioactive diversity relationships
in Figure 7a-c are comparatively weak. While there is

no unequivocal scale on which to compare the effects of
varying size and varying bioactive properties, results
here suggest that, within the RBI library, all three types
of MOLSKEYS distances respond more to changes in
molecular weight than to changes in target coverage.

When sampling is done within the CMC library, the
1 - TC results are quite different from the RBI case,
and we see a compelling illustration of the biases
introduced by this dissimilarity measure, Figure 7d.
With unconstrained molecular weight, MOLSKEYS
structural diversity is observed to peak and then actu-
ally drop off as bioactive diversity increased. The effect
is largely removed, however, when molecular weight is
constrained, and 1 - TC increases almost monotonically
with target counts. These differences are undoubtedly
due to the presence or absence of a bias toward larger
ligands at the high end of the bioactive diversity scale.
When molecular weight is allowed to vary freely, larger
compounds are encountered, and 1 - TC measures less
structural dissimilarity among these bioactively diverse
compounds. The overall effect is small, but it is clearly
distinguishable. This phenomenon does not occur with
XOR distance (Figure 7e), but it does to a slight degree
with the hybrid distance function (Figure 7f), simply
because of the factor of 1 - TC.

Figure 8 summarizes results for the same series of
tests using Daylight hashed fingerprints. The general
behavior here is roughly the same as observed with the
MOLSKEYS, with one notable exception: XOR dis-
tances in the RBI library decrease almost linearly with
increasing bioactive diversity, irrespective of constraints

pi ) (ni)
t where 0 e t e 2 (7)

Figure 6. For subsets of 50 compounds, the average molecular
weight is monitored as the number of biological targets covered
is varied: (a) RBI library; (b) CMC library.
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placed on the molecular weight (Figure 8b). That this
would occur in the unconstrained case is perhaps not
surprising since RBI ligand size, hence the number of
potential working bits, decreases somewhat with in-
creasing numbers of targets (Figure 6a). It is surprising,
however, that the downward drift in structural diversity
persists, even when size changes are controlled. The
underlying cause for this behavior is unclear, and the
complexity and random characteristics of hashed fin-
gerprints certainly make it difficult to speculate, espe-
cially since the distance drift corresponds to only about
1% of the overall fingerprint.

Effects of Varying Structural Diversity

The final set of experiments involved the use of
designed structural diversity to probe size effects and
their impact on bioactive properties. There are of course
any number of ways to select diverse subsets of
compounds,4,7,17,28-31 and it is beyond the scope of this
investigation to consider every technique. What is
important here is not so much the method itself, but
rather the consequences of using any sort of 2D diversity
design to select compounds. Biases that are inherent
in the descriptors and/or distance functions should have
some impact on the results, regardless of which algo-
rithm is utilized.

We have chosen a method which selects compounds
that are distributed in an approximately uniform fash-
ion throughout descriptor space. This spread design

algorithm and its general properties have been detailed
elsewhere,32 and the reader is referred there for ad-
ditional information. The basic goal is to select a subset
of compounds S, in which the members are as far away
as possible, on average, from their nearest neighbors
within the subset. This is achieved by maximizing the
following function of distance:

Here, distij is the 2D distance between compounds i and
j, and the MIN operation returns the distance between
compound i and its nearest neighbor within the subset.

A stochastic procedure is used to maximize fspread,
wherein an initial subset of compounds is selected
randomly, and then pairwise exchanges between the
subset and the remainder of the library are made so as
to increase the value of the function. At any step in the
algorithm, the two compounds in S with the smallest
pairwise distance are identified. Of the two, the one
which is closer to some other compound in S is flagged
for ejection. This flagged compound is exchanged for one
that is outside of S if the exchange will bring about an
overall increase in fspread. Pairwise exchanges are con-
tinued until no further increase in the function value
can be achieved. At this point, a new random subset
may be selected and the process repeated, with the
highest function value and associated compounds being
retained at the end.

Figure 7. Results for MOLSKEYS. Within subsets of 50 compounds, the average distance between pairs of compounds is monitored
as the number of biological targets covered is varied. Dotted curves show the corresponding distances that were obtained when
molecular weight was varied (Figure 4): (a-c) RBI library; (d-f) CMC library.

fspread ) ∑i∈S MIN{distij: j∈S, j*i} (8)
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Note that while we have used average pairwise
distance to measure diversity throughout the course of
this investigation, we are not using it to design diversity.
This is simply because a function that relies on all pairs
of distances typically results in what may be called an
edge design.31,32 Here, the compounds selected tend to
lie near the outer boundaries or edges of descriptor
space. Such an arrangement may be useful, depending
upon the circumstances, but the goal in this investiga-
tion is to provide reasonable coverage of the overall
descriptor space, and this is better accomplished by
maximizing average nearest neighbor distance.

We would like to point out that the premise and
characteristics of this algorithm are analogous to those
of the well-known maximum dissimilarity spread de-
sign.28,31 The current approach was chosen over others
because its stochastic nature affords the possibility of
a huge number of different diverse subsets. Maximum
dissimilarity algorithms, by contrast, rely on the selec-
tion of a single seed compound, followed by a determin-
istic procedure for adding compounds to the subset.28,31

Thus, the number of different diverse subsets possible
is at most equal to the number of compounds in the
overall library.

As an illustrative example of how the stochastic
spread algorithm performs, we have included chemical
structures for three diverse subsets of 10 compounds
selected from the CMC library using the MOLSKEYS
and 100 random restarts of the algorithm, Figure 9. The
three types of distance functions were used to arrive at

the three different subsets in Figure 9. Size effects are
readily apparent, as the 1 - TC dissimilarities yield
significantly smaller compounds than those of XOR.
Average molecular weights for these two subsets are 207
and 378, respectively. Not surprisingly, the hybrid
distance function selects intermediate-sized compounds
with an average molecular weight of 292.

Table 3 compares average pairwise and nearest
neighbor distances among compounds in the three
spread-diverse subsets and 100000 randomly selected
subsets of 10 compounds. The nearest neighbor of each
compound was identified according to the distance
function specified in the column heading, so the average
nearest neighbor distances across any one row do not
necessarily reflect the same pairs of compounds. Bold-
face entries are the largest values observed in each
column, and they of course correspond to cases where
the diversity algorithm utilized that particular distance
function. What is most interesting here is the fact that
the XOR spread design selects compounds which are
structurally more diverse than random according to 1
- TC, but the reverse is not true. When compounds are
selected purely on the basis of 1 - TC, pairwise and
nearest neighbor distances in XOR space are actually
shorter than those observed in the case of randomly
selected compounds. This is no doubt a direct result of
the bias in the sizes of the Tanimoto compounds. These
small structures simply do not set enough bits to
produce sufficiently large XOR distances.

To examine these sorts of phenomena in a more

Figure 8. Results for Daylight hashed fingerprints. Within subsets of 50 compounds, the average distance between pairs of
compounds is monitored as the number of biological targets covered is varied. Dotted curves show the corresponding distances
that were obtained when molecular weight was varied (Figure 5): (a-c) RBI library; (d-f) CMC library.
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continuous fashion, we have established a sliding scale
of structural diversity that allows us to directly monitor
molecular weight and target coverage as a function of
2D diversity. First, a subset of 50 compounds was
selected at random, then one complete pass of the

spread algorithm was performed. This corresponds to
just a single random restart, which is in contrast to the
100 random restarts used in the previous illustrative
example. The compounds in the resulting diverse subset
were then replaced, one-by-one, with compounds chosen
at random from the complete library. Random selections
were made both from within the 50-member subset and
from outside it, so that there would be no bias in the
replacements. Thus if the randomly chosen compound
was already included in the subset, no action was taken,
but the number of “diverse” compounds was still con-
sidered to drop by one.

With each replacement, the subset becomes progres-
sively more like a random collection, and the overall
structural diversity slowly drifts downward. During this

Figure 9. Compounds chosen from the CMC library with the spread design algorithm and different distance functions: (a) 1 -
TC; (b) XOR; (c) (1 - TC)‚XOR.

Table 3. Comparison of Distances for 10-Member Subsets
Selected from the CMC Library Using MOLSKEYS Spread
Designs and Random Sampling

average distances within subset
(all pairs/nearest neighbors)subset selection

method 1 - TC XOR (1 - TC)‚XOR

1 - TC 0.863/0.793 37.6/27.5 32.6/22.3
XOR 0.673/0.581 59.0/53.2 40.0/31.4
(1 - TC)‚XOR 0.771/0.689 57.2/48.6 44.1/35.3
random 0.646/0.470 44.4/28.6 29.7/14.6
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Figure 10. Results for MOLSKEYS. For subsets containing 50 compounds, the average molecular weight is monitored as the
number of spread-diverse compounds within the subset is varied: (a-c) RBI library; (d-f) CMC library.

Figure 11. Results for Daylight hashed fingerprints. For subsets containing 50 compounds, the average molecular weight is
monitored as the number of spread-diverse compounds within the subset is varied; (a-c) RBI library; (d-f) CMC library.
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Figure 13. Results for Daylight hashed fingerprints. For subsets containing 50 compounds, the average number of biological
targets covered is monitored as the number of spread-diverse compounds within the subset is varied: (a-c) RBI library; (d-f)
CMC library.

Figure 12. Results for MOLSKEYS. For subsets containing 50 compounds, the average number of biological targets covered is
monitored as the number of spread-diverse compounds within the subset is varied: (a-c) RBI library; (d-f) CMC library.
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process, we monitored the average molecular weight and
the number of biological targets covered. To generate
smooth statistics, the entire random replacement pro-
cedure was repeated 1000 times, with a different initial
spread-diverse subset in each case. So results reported
for, say, subsets with 40 diverse members are actually
the average of 1000 different cases, wherein the 50-
member spread-diverse subset has had 10 of its com-
pounds replaced with random selections.

To investigate whether size biases could be controlled
as compounds were selected via the spread algorithm,
a procedure for controlling the average molecular weight
was employed. This procedure was directly analogous
to the one used when biological target counts were
varied systematically. After selecting a random subset
in the initial phase of the spread algorithm, each
compound that was a candidate for exchange into the
subset was required to have a molecular weight that
would drive the subset average molecular weight toward
that observed for the entire library. All sampling
experiments in this section were performed with and
without application of this molecular weight constraint.

Figure 10 summarizes for the MOLSKEYS the impact
of changes in 2D diversity on ligand size. The horizontal
scales in these plots range from zero diverse compounds,
i.e., purely random, to 50 diverse compounds, i.e., the
fully spread-diverse subset. When no size constraints
are exercised in the spread algorithm, molecular weights
associated with the three types of distance functions
diverge sharply from each other in both the RBI and
CMC libraries. Size effects are most pronounced when
1 - TC is used, with downward drifts of about 77 and
74 amu in the two libraries. When the size constraint
is enforced, all fluctuations in molecular weight are
reduced to less than 5 amu. Analogous results are seen
for Daylight hashed fingerprints, Figure 11, where once
again 1 - TC leads to the largest unconstrained drifts
in molecular weight and enforcing the size constraint
attenuates all fluctuations to less than 6 amu.

Figure 12 illustrates the corresponding effects on
bioactive diversity when the MOLSKEYS are used to
select 2D diversity. With molecular weight free to vary,
the numbers of biological targets covered within the RBI
collection (12a-c) increase at about the same rate,
regardless of which distance function is employed.
Enforcing the molecular weight constraint tends to
decrease the amount of bioactive diversity accessible,
though this reduction is quite small in the case of 1 -
TC.

Very different behavior is seen in moving to the CMC
library, Figure 12d-f. With unconstrained molecular
weight, use of 1 - TC leads to only 3.6 additional targets
being covered beyond random selection, which compares
to 7.7 and 8.0 additional targets for the XOR and hybrid
distance functions, respectively. Constraining molecular
weight improves results slightly for 1 - TC, but it does
not appear to remove all of the size-related biases that
are associated with this distance function.

Results are similar for Daylight hashed fingerprints,
Figure 13, except that the molecular weight constraint
appears to have a slightly more positive impact on the
1 - TC results than was observed with the MOLSKEYS.
Here, as the number of diverse compounds is increased,
target counts for constrained sampling overtake those

of unconstrained sampling in both the RBI and CMC
libraries. It is interesting to note that within the CMC
library, the number of biological targets covered by 1 -
TC and unconstrained molecular weight actually peaks
when only 39 structurally diverse compounds are present
and then drops off slightly as more 2D diversity is
added. With this method of sampling, fully spread-
diverse subsets of 50 compounds cover, on average, only
2.2 more targets than randomly selected subsets of 50.

It is of course natural to wonder what the effects are
of varying the number of compounds contained in each
subset. In other words, what sorts of results may be
expected when larger or smaller diverse subsets are
chosen? We have found that the trends observed here
using groups of 50 compounds are generally preserved,
regardless of how many compounds are selected. How-
ever, the effects are most obvious when smaller subsets
are analyzed, simply because the sampling character-
istics of each distance function are more pronounced.
Thus, for example, the bias toward low molecular
weights that occurs with 1 - TC is increasingly ampli-
fied as smaller and smaller fractions of a library are
sampled. In the case of the CMC collection, we have
observed that when 1 - TC is used to select subsets of
fewer than 40 compounds, the number of biological
targets covered is frequently no more than that obtained
with random subsets of the same size.

Conclusions

Within the space of 2D fragment descriptors, the
method of calculating distance can have a significant
impact on the perceived structural diversity of com-
pound subsets, and on the sizes and properties of
compounds that are selected using a 2D diversity
design. Our experiments have placed a premium on
biological target coverage, and we have used this
measure of bioactive diversity as the relevant property
with which 2D structural diversity should correlate.

Of the three distance functions tested here, 1 - TC
shows the most direct and pronounced bias toward size,
consistently measuring a higher level of 2D diversity
among collections of compounds whose structures are
far smaller than the average across the library from
which they are sampled. There appear to be no obvious
undesirable consequences with regard to bioactive
diversity, so long as the library examined exhibits
sufficiently wide target coverage among smaller com-
pounds. If, however, target coverage is skewed more
toward larger compounds, then 1 - TC appears to be a
less reliable measure of bioactive diversity, and selecting
compounds on the basis of this distance function is not
recommended unless some mechanism is invoked to
control average size. A straightforward procedure that
constrains the average molecular weight of diverse
subsets is observed to generally improve results for 1
- TC.

XOR distance, in contrast to 1 - TC, places a greater
emphasis on large compounds when it comes to measur-
ing structural diversity. This bias, however, does not
seem to result in as much variability in performance
between libraries as observed with 1 - TC. It should
be noted that if target coverage within a library were
sufficiently biased toward small compounds, then XOR
distance might show the same sort of degradation in
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performance that is seen with 1 - TC in libraries biased
toward large compounds.
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